
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

1 Instructor: Daniel Llamocca

Unit 2 – Optimized Implementation of Logic

Functions

OVERVIEW
▪ We can always minimize logic functions using the Boolean theorems. However, more powerful methods such as Karnaugh

maps and Quine-McCluskey algorithm exist: they provide a systematic way to arrive at the minimal form of a Boolean
function.

KARNAUGH MAPS

2 VARIABLES:

3 VARIABLES:

m0 m2

x y

0 0

0 1

1 0

1 1

f

m0
m1
m2
m3

m1 m3

y

x

0 1

x y

0 0

0 1

1 0

1 1

f

0

1

1

0
1 0

y

x

x

0

1

0 1

x

y

y

f = x'y + y'x = m1+m2

x x

y

y

1 0

x y

0 0

0 1

1 0

1 1

f

1

1

0

1
1 1

y

x

f = x' + y
x x

y

y

m0 m2

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f

m0
m1
m2
m3
m4
m5
m6
m7

m1 m3

z

xy

x y

0

1

00 01

z

zm6 m4

m7 m5

11 10

x y x y x y

x x

yy y

1 0

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f

1

1

0

0

1

0

0

1

1 0

z

xy

x y

0

1

00 01

z

z0 1

1 0

11 10

x y x y x y

x x

yy y

f = x'y' + z'y' + xyz

1 1

0 0

z

xy

x y

0

1

00 01

z

z1 1

0 1

11 10

x y x y x y

x x

yy y

f = xy' + z'

1 1

1 0

z

xy

x y

0

1

00 01

z

z1 1

0 1

11 10

x y x y x y

x x

yy y

f = y' + z'

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

2 Instructor: Daniel Llamocca

4 VARIABLES:

DON’T CARE OUTPUTS

▪ This method appears in: “The Map Method for Synthesis of Combinational Logic Circuits”, Maurice Karnaugh, Transactions

of the AIEE, Part I: Communication and Electronics, vol. 72, no. 5, Nov. 1953, pp. 593-599. Karnaugh maps of 5, 6, 7, 8,
and 9 are hinted at. Beyond 9 variables, the mental gymnastics for minimization become formidable.

▪ The Quine-McCluskey algorithm provides a simpler approach when dealing with a relatively large number of variables.

m0 m4

x y z w

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

f

m0
m1
m2
m3
m4
m5
m6
m7
m8
m9
m10
m11
m12
m13
m14
m15

m1 m5

zw

xy

x y

00

00 01

m8

m9

11 10

x y x y x y

x x

yy y

m3 m7

m2 m6

m11

m10

m12

m13

m15

m14

01

11

10

z w

z w

z w

z w

z

z

w

w

w

1 0

x y z w

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

f

1

0

1

0

0

1

0

1

0

1

0

0

0

0

0

0

0 1

zw

xy

x y

00

00 01

0 0

0 1

11 10

x y x y x y

x x

yy y

0 1

1 0

0 0

0 0

01

11

10

z w

z w

z w

z w

z

z

w

w

w

f = x'y'w' + x'yw + xy'z'w

1 0

0 1

zw

xy

x y

00

00 01

0 1

1 0

11 10

x y x y x y

x x

yy y

0 1

1 0

1 0

0 1

01

11

10

z w

z w

z w

z w

z

z

w

w

w

f = y'w' + wy

1 1

0 0

zw

xy

x y

00

00 01

1 1

0 0

11 10

x y x y x y

x x

yy y

1 0

1 1

0 1

1 1

01

11

10

z w

z w

z w

z w

z

z

w

w

w

f = y'z + w'

0 0

1 0

zw

xy

x y

00

00 01

0 0

0 1

11 10

x y x y x y

x x

yy y

1 0

0 0

0 1

X 0

01

11

10

z w

z w

z w

z w

z

z

w

w

w

f = wy'

0 0

1 1

zw

xy

x y

00

00 01

0 0

1 X

11 10

x y x y x y

x x

yy y

0 0

0 0

0 0

X 0

01

11

10

z w

z w

z w

z w

z

z

w

w

w

f = z'w

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

3 Instructor: Daniel Llamocca

QUINE-MCCLUSKEY ALGORITHM
▪ This method appears in: “Minimization of Boolean Functions”, E. J. McCluskey, Jr., The Bell System Technical Journal, vol.

35, no. 6, Nov. 1956, pp. 1417-1444.

▪ Literal: For an 𝑛 −variable function 𝐹, it is a variable expressed as 𝑋 or 𝑋̅.

▪ Implicant: For an 𝑛 −variable function, it is any product term that can appear in any possible sum of products (canonical
or non-canonical) that represents the function. If 𝑃 is an implicant, then 𝑃 = 1 implies that the function is 1. Thus, every

minterm is an implicant.
A graphical way to see the implicants of a function is to take a look at the Karnaugh map (for a relatively low number of
variables). All the possible terms we can get out of the K-map are implicants.

▪ Prime implicant: It is an implicant 𝑃 such that the removal of any literal from P results in non-implicant of the function.

OUTLINE

1. Get the function to be minimized represented as a canonical Sum of Products: Use the minterm expansion form.

𝐹(𝐴, 𝐵, 𝐶, 𝐷) =∑𝑚(0,1,2,5,6,7,8,9,10,14)

2. Get the Prime Implicants of the function: This is done by systematically applying 𝑋𝑌 + 𝑋𝑌̅ = 𝑋 to all possible minterms

and resulting non-canonical product terms. So, we build the Implicants Table by determining all Implicants:
✓ We represent the minterms using the binary notation. For example: 𝑚1 = 𝐴̅𝐵̅𝐶̅𝐷 = 0001. Then, we group the minterms

by the number of ones they contain. For an 𝑛 −variable function, the minterms have 𝑛 literals.

✓ We apply 𝑋𝑌 + 𝑋𝑌̅ = 𝑋 to all possible pairs of minterms. This applies to pair of minterms that only vary by one literal.

We attach a ‘✓’ to every minterm that was employed.
𝑚0,1 = 𝑚0 +𝑚1 = 𝐴̅𝐵̅𝐶̅𝐷̅ + 𝐴̅𝐵̅𝐶̅𝐷 = 𝐴̅𝐵̅𝐶̅

Note the table representation: 𝑚0,1 = 𝑚0 +𝑚1 = 0000 + 0001 = 000 −. The symbol " − " indicates that a literal was

simplified. The resulting column consists of terms with 𝑛 − 1 literals.

✓ We keep applying 𝑋𝑌 + 𝑋𝑌̅ = 𝑋 to all possible pair of resulting product terms. We attach a ‘✓’ to every term that was
employed. For each column we add, an extra literal is simplified (or a symbol " − " is added to the terms).

𝑚0,1,8,9 = 𝑚0,1 +𝑚8.9 = 𝐴̅𝐵̅𝐶̅ + 𝐴𝐵̅𝐶̅ = 𝐵̅𝐶̅ ≡ 000 − + 100− = −00 −

If we happen to get a repeated term, we eliminate one:
𝑚0,1,8,9 = 𝑚0,8,1,9 = −00−, → 𝑚0,8,1,9 𝑖𝑠 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑

✓ When we cannot simplify any further, we stop and look for the terms that do not have a check ‘✓’. These terms are
called the Prime Implicants. All the terms that appear in the table are the Implicants.

Number

of ones

4-literal

implicants

3-literal

implicants

2-literal

implicants

1-literal

implicants

0 m0 = 0000 ✓

m0,1 = 000- ✓

m0,2 = 00-0 ✓

m0,8 = -000 ✓

m0,1,8,9 = -00-

m0,2,8,10 = -0-0

m0,8,1,9 = -00-

We can’t combine

any further, so we

stop here

1

m1 = 0001 ✓

m2 = 0010 ✓

m8 = 1000 ✓

m1,5 = 0-01

m1,9 = -001 ✓

m2,6 = 0-10 ✓

m8,9 = 100- ✓

m8,10 = 10-0 ✓

m2,10 = -010 ✓

m2,6,10,14 = --10

m2,10,6,14 = --10

2

m5 = 0101 ✓

m6 = 0110 ✓

m9 = 1001 ✓

m10= 1010 ✓

m5,7 = 01-1

m6,7 = 011-

m6,14 = -110 ✓

m10,14 = 1-10 ✓

3
m7 = 0111 ✓

m14= 1110 ✓

4

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐴̅𝐶̅𝐷+ 𝐴̅𝐵𝐷 + 𝐴̅𝐵𝐶 + 𝐵̅𝐶̅ + 𝐵̅𝐷̅ + 𝐶𝐷̅

3. Select a minimum set of Prime Implicants: 𝐹 is the sum of this set that contains the minimum number of literals.

✓ Build the Prime Implicant Chart. Mark the minterms that cover each single Prime Implicant with an ‘X’.

✓ Get the Essential Prime Implicants: Look for minterms that are covered by (are part of) a single Prime Implicant:

this is, look for columns with one X. The corresponding Prime Implicants are the Essential Prime Implicants.

The minimized 𝐹 includes the Essential Prime Implicants. Thus, we must eliminate the minterms that are part of an

Essential Prime Implicant out of the other Prime Implicants: cross out the rows of the Essential Prime Implicants and the
columns of the covered minterms. In the example, the Essential Prime Implicants are: 𝐵̅𝐶̅, 𝐶𝐷̅

✓ For the remaining X’s: select enough Prime Implicants to cover all the minterms of the function. This is a trial and error
procedure: start by selecting the Prime Implicant that crosses out (rows and columns) most of the Xs, and so on.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

4 Instructor: Daniel Llamocca

Prime

Implicants

Minterms

0 1 2 5 6 7 8 9 10 14

m0,1,8,9 𝐵̅𝐶̅ X X X X

m0,2,8,10 𝐵̅𝐷̅ X X X X

m2,6,10,14 𝐶𝐷̅ X X X X

m1,5 𝐴̅𝐶̅𝐷 X X

m5,7 𝐴̅𝐵𝐷 X X

m6,7 𝐴̅𝐵𝐶 X X

→ 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐵̅𝐶̅ + 𝐶𝐷̅ + 𝐴̅𝐵𝐷

EXAMPLE: 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ∑𝑚(4,8,10,11,12,15) + ∑𝑑(9,14). Function with don’t care terms.

✓ Implicants Table: To help simplifying the function, the don’t care terms are included as minterms here. If a don’t care

term ends up being a Prime Implicant, we delete it (otherwise we are not taking advantage of the don’t care terms).

Number

of ones

4-literal

implicants

3-literal

implicants

2-literal

implicants

1-literal

implicants

0

We can’t combine

any further, so we

stop here

1
m4 = 0100 ✓

m8 = 1000 ✓

m4,12 = -100

m8,9 = 100- ✓

m8,10 = 10-0 ✓

m8,12 = 1-00 ✓

m8,9,10,11 = 10--

m8,10,9,11 = 10--

m8,10,12,14 = 1--0

m8,12,10,14 = 1--0

2

m9 = 1001 ✓

m10= 1010 ✓

m12= 1100 ✓

m9,11 = 10-1 ✓

m10,11 = 101- ✓

m10,14 = 1-10 ✓

m12,14 = 11-0 ✓

m10,11,14,15 = 1-1-

m10,14,11,15 = 1-1-

3
m11= 1011 ✓

m14= 1110 ✓

m11,15 = 1-11 ✓

m14,15 = 111- ✓

4 m15= 1111 ✓

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐵𝐶̅𝐷̅+ 𝐴𝐵̅ + 𝐴𝐷̅ + 𝐴𝐶

✓ Prime Implicant Chart: The don’t care terms are NOT included here. Only the minterms are included here, since we are

trying to have as few X’s as possible.
Prime

Implicants

Minterms

4 8 10 11 12 15

m4,12 𝐵𝐶̅𝐷̅ X X

m8,9,10,11 𝐴𝐵̅ X X X

m8,10,12,14 𝐴𝐷̅ X X X

m10,11,14,15 𝐴𝐶 X X X

▪ More than one minimal solution exist, depending on the X (in the same pink column) that we use:

→ 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐵𝐶̅𝐷̅ + 𝐴𝐶 + 𝐴𝐵̅

𝑂𝑟: 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐵𝐶̅𝐷̅+ 𝐴𝐶 + 𝐴𝐷̅

EXAMPLE: 𝐹(𝐴, 𝐵, 𝐶) = ∑𝑚(0,1,2,5,6,7)

✓ Implicants Table:

Number

of ones

3-literal

implicants

2-literal

implicants

1-literal

implicants

0 m0 = 000 ✓
m0,1 = 00-

m0,2 = 0-0

We can’t combine

any further, so

we stop here

1
m1 = 001 ✓

m2 = 010 ✓

m1,5 = -01

m2,6 = -10

2
m5 = 101 ✓

m6 = 110 ✓

m5,7 = 1-1

m6,7 = 11-

3 m7 = 111 ✓

𝐹(𝐴, 𝐵, 𝐶) = 𝐴̅𝐵̅ + 𝐴̅𝐶̅ + 𝐵̅𝐶 + 𝐵𝐶̅ + 𝐴𝐶 + 𝐴𝐵

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

5 Instructor: Daniel Llamocca

✓ Prime Implicant Chart:

Prime

Implicants

Minterms

0 1 2 5 6 7

m0,1 𝐴̅𝐵̅ X X

m0,2 𝐴̅𝐶̅ X X

m1,5 𝐵̅𝐶 X X

m2,6 𝐵𝐶̅ X X

m5,7 𝐴𝐶 X X

m6,7 𝐴𝐵 X X

▪ No essential prime implicants. So, we can only select the minimum number of Prime Implicants (i.e., crossing out rows

and columns) that covers all the minterms. The example above shows a group of Prime Implicants whose number of
elements is the minimum (3).

▪ For this particular group, there is only one minimal solution (recall that there can be more than one minimal solution for
the same group of Prime Implicants):

𝐹(𝐴, 𝐵, 𝐶) = 𝐴̅𝐵̅ + 𝐵𝐶̅ + 𝐴𝐶

▪ There can be more than one group of Prime Implicants whose number of elements is the minimum (3 in this example),

as we can pick any X in a column to mark our Prime Implicants. The example below shows the only other possible

minimum group of Prime Implicants:

Prime

Implicants

Minterms

0 1 2 5 6 7

m0,1 𝐴̅𝐵̅ X X

m0,2 𝐴̅𝐶̅ X X

m1,5 𝐵̅𝐶 X X

m2,6 𝐵𝐶̅ X X

m5,7 𝐴𝐶 X X

m6,7 𝐴𝐵 X X

▪ For this particular group of Prime Implicants, there is only one minimal solution:

𝐹(𝐴, 𝐵, 𝐶) = 𝐴̅𝐶̅ + 𝐵̅𝐶 + 𝐴𝐵

EXAMPLE: 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ∑𝑚(0,2,3,5,6,7,8,9) + ∑𝑑(10,11,12,13,14,15).

There are too many minterms. This will make the process cumbersome. Instead, it might be better to optimize:

𝐹̅(𝐴, 𝐵, 𝐶, 𝐷) = ∑𝑚(1,4) + ∑𝑑(10,11,12,13,14,15)

Once we get the optimized form of 𝐹̅, we complement it in order to get 𝐹.

✓ Implicants Table (𝐹̅) :

Number

of ones

4-literal

implicants

3-literal

implicants

2-literal

implicants

1-literal

implicants

0

We can’t combine

any further, so we

stop here

1
 m1 = 0001

m4 = 0100 ✓
m4,12 = -100

2
m10= 1010 ✓

m12= 1100 ✓

m10,11 = 101- ✓

m10,14 = 1-10 ✓

m12,13 = 110- ✓

m12,14 = 11-0 ✓

m10,11,14,15 = 1-1-

m10,14,11,15 = 1-1-

m12,13,14,15 = 11--

m12,14,13,15 = 11--

3

m11= 1011 ✓

m13= 1101 ✓

m14= 1110 ✓

m11,15 = 1-11 ✓

m13,15 = 11-1 ✓

m14,15 = 111- ✓

4 m15= 1111 ✓

𝐹̅(𝐴, 𝐵, 𝐶, 𝐷) = 𝐴̅ 𝐵̅ 𝐶̅𝐷 + 𝐵𝐶̅𝐷̅ + 𝐴𝐶 + 𝐴𝐵

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

6 Instructor: Daniel Llamocca

✓ Prime Implicant Chart (𝐹̅): The don’t care terms are NOT included.

Prime

Implicants

Minterms

1 4

m1 𝐴̅ 𝐵̅ 𝐶̅𝐷 X

m4,12 𝐵𝐶̅𝐷̅ X

m10,11,14,15 𝐴𝐶

m12,13,14,15 𝐴𝐵

→ 𝐹̅(𝐴, 𝐵, 𝐶, 𝐷) = 𝐴̅ 𝐵̅ 𝐶̅𝐷 + 𝐵𝐶̅𝐷̅  𝐹(𝐴, 𝐵, 𝐶, 𝐷) = (𝐴 + 𝐵 + 𝐶 + 𝐷̅)(𝐵̅ + 𝐶 + 𝐷)

✓ Note: This method obtains the most minimized form of 𝐹̅ as a SOP: 𝐹̅ = 𝐴̅ 𝐵̅ 𝐶̅𝐷 + 𝐵𝐶̅𝐷̅. For 𝐹, it obtains the most minimized

form of 𝐹 as a POS: 𝐹 = (𝐴 + 𝐵 + 𝐶 + 𝐷̅)(𝐵̅ + 𝐶 + 𝐷).

✓ We can always get 𝐹 as a SOP, but note that the expression needs some minimization:

𝐹 = 𝐴𝐵̅ + 𝐴𝐷 + 𝐵𝐷 + 𝐷̅𝐵̅ + 𝐶 + 𝐶𝐷 + 𝐶𝐴 + 𝐶𝐵 + 𝐶𝐵̅ + 𝐶𝐷̅ = 𝐷𝐴 + 𝐷̅𝐵̅ + 𝐴𝐵̅ + 𝐵𝐷 + 𝐶 = 𝐷𝐴 + 𝐷̅𝐵̅ + 𝐵𝐷 + 𝐶 (*)

✓ If we apply Quine-McCluskey directly to 𝐹, the resulting Boolean SOP expression might look different than 𝐹 = 𝐷𝐴 + 𝐷̅𝐵̅ +

𝐵𝐷 + 𝐶. In fact, it might be even more minimized (note how we needed to apply some minimization to 𝐹 in *). This is

because the don’t care terms are likely to be assigned ‘1’ and ‘0’ differently for 𝐹 and 𝐹̅. The resulting functions will be

equivalent though.

✓ Conclusion: For any function, using the method of minimizing 𝐹̅ and then invert to get 𝐹, the resulting expression of 𝐹 as a

SOP might appear different (and be not fully minimized) than the 𝐹 resulting by applying Quine-McCluskey directly to 𝐹.

ISSUES:

▪ To determine a minimal solution (i.e. solution with the same number of literals), we need to efficiently cross out rows and

columns. We can do this by trial and error, but it can become a cumbersome procedure as the number of variables increase.
And as illustrated in the examples, there can be more than one way to efficiently cross out rows and columns.

▪ There can also be more than one minimal solution (even if there is only one way to efficiently cross out rows and columns)
resulting from this method. We can determine all possible minimal solutions by inspection, but this can become cumbersome
as the number of variables increase.

▪ A systematic way to determine all possible minimum solutions is provided by Petrick’s method: given a prime implicant

chart, we can determine all minimum sum-of-products solutions. This is out of the scope of this course.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

7 Instructor: Daniel Llamocca

PRACTICE EXERCISES
▪ The figure depicts the K-map of a 3-variable Boolean function.

✓ Provide the simplified Boolean equation.
✓ Is the term resultant from the blue box redundant? Why?
✓ What Boolean Theorem is this K-map illustrating?

▪ We want to display the results of a roll of a die on a 7-LED array. The input data is a 3-bit unsigned number from 1 to 6.

For example, the code 101 needs to be displayed such that it represents the number ‘5’ in the die-like LED array. For the
given arrangement of Boolean variables in the LED array (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔), the number ‘5’ is represented as ‘1011101’.

✓ Design the logic circuit that converts the 3-bit value to a 7-bit LED pattern (LED ON represents a logic ‘1’, and LED OFF
represents a logic ‘0’): complete the truth table for each output 𝑎𝑏𝑐𝑑𝑒𝑓𝑔, provide the simplified expressions, and sketch

the logic circuit.

▪ Design a circuit that converts a 4-bit unsigned integer (whose values range from 0 to 9) into Morse code (alphanumeric

characters are encoded into sequences of dots and dashes). The figure depicts the Morse code representations for numbers
from 0 to 9. The circuit generates 5 bits, where a dot is represented as a ‘0’, and a dash is represented as a ‘1’.

▪ Simplify the Boolean expression for 𝑓. Note that an ‘X’ on the input means that the logical value can be

either ‘0’ or ‘1’. So, if the input 𝑥𝑦𝑧𝑤 is 0X1X, it means that for the output 𝑓 to be 1, we only need

𝑥 = 0, and 𝑧 = 1.

7

1 2 3 4 5 6

Die value

1

2

3

4

5

6

x y z

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

𝑥

𝑧

𝑦 ? 𝑑

𝑑

𝑑
𝑑

𝑑

𝑑1

𝑑0

5

Decimal

value

0

1

2

3

4

5

6

7

8

9

𝑥

𝑧

𝑦

?
𝑤

Morse code

x y z w f

0 X 1 X 1

X 1 0 1 1

1 1 X 0 1

1 0 0 1 1

all others 0

0

1 1

xy

x y

0

1

 01

z

 1 0

1 0

 10

x y x y

x x

y y

	Overview
	Karnaugh maps
	2 variables:
	3 variables:
	4 variables:
	Don’t care outputs

	Quine-McCluskey Algorithm
	Outline
	Issues:

